Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis
نویسندگان
چکیده
The skeleton is the preferred site for prostate cancer (PC) metastasis leading to incurable castration-resistant disease. The increased expression of genes encoding steroidogenic enzymes found in bone metastatic tissue from patients suggests that up-regulated steroidogenesis might contribute to tumor growth at the metastatic site. Because of the overall sclerotic phenotype, we hypothesize that osteoblasts regulate the intratumoral steroidogenesis of castration resistant prostate cancer (CRPC) in bone. We here show that osteoblasts alter the steroidogenic transcription program in CRPC cells, closely mimicking the gene expression pattern described in CRPC. Osteoblast-stimulated LNCaP-19 cells displayed an increased expression of genes encoding for steroidogenic enzymes (CYP11A1, HSD3B1, and AKR1C3), estrogen signaling-related genes (CYP19A1, and ESR2), and genes for DHT-inactivating enzymes (UGT2B7, UGT2B15, and UGT2B17). The observed osteoblast-induced effect was exclusive to osteogenic CRPC cells (LNCaP-19) in contrast to osteolytic PC-3 and androgen-dependent LNCaP cells. The altered steroid enzymatic pattern was specific for the intratibial tumors and verified by immunohistochemistry in tissue specimens from LNCaP-19 xenograft tumors. Additionally, the overall steroidogenic effect was reflected by corresponding levels of progesterone and testosterone in serum from castrated mice with intratibial xenografts. A bi-directional interplay was demonstrated since both proliferation and Esr2 expression of osteoblasts were induced by CRPC cells in steroid-depleted conditions. Together, our results demonstrate that osteoblasts are important mediators of the intratumoral steroidogenesis of CRPC and for castration-resistant growth in bone. Targeting osteoblasts may therefore be important in the development of new therapeutic approaches.
منابع مشابه
Intratumoral steroidogenesis in castration-resistant prostate cancer: a target for therapy
Development of castration-resistant prostate cancer (CRPC) in a low androgen environment, arising from androgen deprivation therapy (ADT), is a major problem in patients with advanced prostate cancer (PCa). Several mechanisms have been hypothesized to explain the progression of PCa to CRPC during ADT, one of them is so called persistent intratumoral steroidogenesis. The existence of intratumora...
متن کاملMaintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth.
Therapy for advanced prostate cancer centers on suppressing systemic androgens and blocking activation of the androgen receptor (AR). Despite anorchid serum androgen levels, nearly all patients develop castration-resistant disease. We hypothesized that ongoing steroidogenesis within prostate tumors and the maintenance of intratumoral androgens may contribute to castration-resistant growth. Usin...
متن کاملComplete Radiologic Response in Metastatic Castration-Resistant Prostate Cancer Treated with Cabazitaxel
متن کامل
ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells
Long-chain acyl-coenzyme A (CoA) synthetase 3 (ACSL3) is an androgen-responsive gene involved in the generation of fatty acyl-CoA esters. ACSL3 is expressed in both androgen-sensitive and castration-resistant prostate cancer (CRPC). However, its role in prostate cancer remains elusive. We overexpressed ACSL3 in androgen-dependent LNCaP cells and examined the downstream effectors of ACSL3. Furth...
متن کاملEvidence of limited contributions for intratumoral steroidogenesis in prostate cancer.
Androgen-deprivation therapy for prostate cancer (PC) eventually leads to castration-resistant PC (CRPC). Intratumoral androgen production might contribute to tumor progression despite suppressed serum androgen concentrations. In the present study, we investigated whether PC or CRPC tissue may be capable of intratumoral androgen synthesis. Steroidogenic enzyme mRNAs were quantified in hormonall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and Cellular Endocrinology
دوره 422 شماره
صفحات -
تاریخ انتشار 2016